您現在的位置:網站首頁 > 教學研究 > 教研成果

在學生的探究中教學相長                        陳宇宏

发布時间:2017-03-16 点击数: 字號:- 小 + 大【收藏】【打印文章】

在學生的探究中教學相長

  陳宇宏

    

要:教學相長不僅是我國古代教育的優秀傳統,而且對當今提倡的素質教育有著重要指導意義。在課堂上邊教邊學與學生的思維碰撞有時我們會有意想不到的收獲。打破思維定勢,改變教學過程程式化的模式,給學生一個主動學習,自主探究的寬松時空,這才是我們現在所追求的高效課堂。

關鍵詞:自主探究  教學相長  課堂教學  互助合作

 我們都知道傳統的“滿堂灌”“填鴨式”的教學沒有給學生留有積極思維的空間和余地,抑制了學生學習的主動性,思考的獨立性,必須堅決摒棄,取而代之的應是師生共同研討型的課堂,互助合作型的課堂。打破思維定勢,改變教學過程程式化的模式,給學生一個主動學習,自主探究的寬松時空,這才是我們現在所追求的高效課堂。平時只要自己做個有心人在教學中試著改變過去的方式,我們可能就會有意想不到的收獲。

 學情:筆者所教的是學校的一個小班,班級學生有一定的學習能力和探究能力。學生剛學完蘇教版必修5的第三章中的《基本不等式》。

 在學生們學習完基本不等式後在講解習題時筆者試著把分析留給學生,沒想到有了意想不到的收獲,題目:

2011年浙江高考數學16)設爲實數,若,則的最大值是         

    筆者沒有著急提出解題思路而是先把時間留給了學生讓他們去做,如果沒有思路的,可以相互討論。結果課堂上有埋頭計算的,也有幾個同學在一起小聲討論的,筆者在行間巡視著,觀察著學生們的計算情況。

   幾分鍾後,筆者請一位同學談談他的想法。

   1:這道題有兩個未知數,我想可以通過減元的思想去處理,令,解出代入式中用”法解決。

   筆者把他的解題過程用實物投影儀投影到熒幕上。

   解:令代入

   

   ,由方程一定有解可得:

  

的最大值是

   師:很好!當我們在解題過程中遇到變量比較多的問題時,我們可以通過減元,來減少題中未知數,而我們是將這道題放在基本不等式這一節作爲一道例題來講解的(現在我們正在學習高中數學必修5基本不等式這一節內容),大家想一下這道題應該還可以怎麽做呢?

2:我是這樣處理的:

(其中等號成立當且僅當時)

  

 3:我覺得應該可以用基本不等式去解決,但是我在式中湊不出,因爲左邊的式子中不可以因式分解.

  師:一定要因式分解嗎?

  3:我想要不然就在左邊湊出一個完全平方,這時裏面有,左邊即爲,但對于我不知道怎麽處理.

 師:我們已經有了,能否利用再湊出一個呢?

 學生若有所思,一會兒就有同學說找到了思路。

 4:可以這樣處理

 師:很好!你來寫寫看。(學生上黑板板演)

 

         

 (其中等號成立當且僅當時)

的最大值是

   當筆者准備繼續講下一道題時,聽到一位學生與同桌小聲嘀咕道:“這個式子右邊等于1,好像我們前面遇到過的三角換元題,但後面多了一個,也不知道能不能這樣做?筆者受到啓發,問大家可以用三角換元處理嗎?

  師:既然三角換元是對于一個平方式與另一個平方式的和爲1的問題,那它不具備這樣的式子時我們難道就不能去化成這樣的式子嗎?

  學生們一個個全都拿起筆算起來,很快有同學有了思路。

 5

   

(其中

的最大值是

   這時學生的思路一下子被調動起來了,有學生提出,這個式子很像在前面學習余弦定理部分時的一個三角形的余弦定理式,所以可以構造三角形去完成,如我們可以構造出一個三角形,使其三邊長分別爲

   很快有同學就說,根據題中條件我們得不到均大于0,筆者這時及時補充道:“由于是求的最大值,所以我們可以認爲均爲正數去求解。”很快就有學生完成了解題過程,過程如下:

   構造如下三角形:

在三角形中我們有,所以有  

,又

(其中    的最大值是

師:我們還可以化齊次式求解,由于是求的最大值,所以我們可以認爲均爲正數去求解.

(其中等號成立當且僅當,)

:還可以這樣處理由

,

    至此,這一節課我們對于這道題就有七種不同的解法,學生們也從中不僅學習了新的知識也複習和回顧了以前的知識。在《禮記·學記》有這樣一句話:“學然後知不足,教然後知困。知不足,然後能自反也;知困,然後能自強也。故曰:教學相長也。”其含义是,通过学习就会知道自己的不足,通过教学生然后就会感觉自己的知识还不能够满足。笔者课后反思時想,如果这一节课老師就题讲题那么我们最多就只有一两种方法,不可能会有如此效果,于是教師要边教边学,而学生要一边向教師学习,獲得知識,一边还要发挥主动性,自强不息,方能进步。这样,教与学两方面互相影响和促进,都会得到提高。教學相長不僅是我國古代教育的優秀傳統,而且对当今提倡的素质教育有着重要指导意义。在课堂上边教边学与学生的思维碰撞有時我们会有意想不到的收获。故我们的课堂还是应在老師合理讲授和正确引导下让学生去自由探究,教師在学生自主探究中应主动观察思考不断完善充实自己。

(編輯:cswu)

相關信息
泰州市第二中学网络中心制作维护 地址:江苏省泰州市迎春东路9号 訒r啵225300
电话:0523-86213120 电邮:kpcpv.com
蘇ICP備05003838號-1  您是本网站第位貴賓!謝謝您的浏覽!